3.1077 \(\int \frac{(2-5 x) x^{3/2}}{(2+5 x+3 x^2)^{5/2}} \, dx\)

Optimal. Leaf size=187 \[ \frac{598 \sqrt{2} (x+1) \sqrt{\frac{3 x+2}{x+1}} \text{EllipticF}\left (\tan ^{-1}\left (\sqrt{x}\right ),-\frac{1}{2}\right )}{3 \sqrt{3 x^2+5 x+2}}+\frac{1450 \sqrt{x} (3 x+2)}{9 \sqrt{3 x^2+5 x+2}}-\frac{2 \sqrt{x} (2175 x+1831)}{9 \sqrt{3 x^2+5 x+2}}+\frac{2 \sqrt{x} (95 x+74)}{9 \left (3 x^2+5 x+2\right )^{3/2}}-\frac{1450 \sqrt{2} (x+1) \sqrt{\frac{3 x+2}{x+1}} E\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{9 \sqrt{3 x^2+5 x+2}} \]

[Out]

(2*Sqrt[x]*(74 + 95*x))/(9*(2 + 5*x + 3*x^2)^(3/2)) + (1450*Sqrt[x]*(2 + 3*x))/(9*Sqrt[2 + 5*x + 3*x^2]) - (2*
Sqrt[x]*(1831 + 2175*x))/(9*Sqrt[2 + 5*x + 3*x^2]) - (1450*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[A
rcTan[Sqrt[x]], -1/2])/(9*Sqrt[2 + 5*x + 3*x^2]) + (598*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticF[ArcT
an[Sqrt[x]], -1/2])/(3*Sqrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.110148, antiderivative size = 187, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {818, 822, 839, 1189, 1100, 1136} \[ \frac{1450 \sqrt{x} (3 x+2)}{9 \sqrt{3 x^2+5 x+2}}-\frac{2 \sqrt{x} (2175 x+1831)}{9 \sqrt{3 x^2+5 x+2}}+\frac{2 \sqrt{x} (95 x+74)}{9 \left (3 x^2+5 x+2\right )^{3/2}}+\frac{598 \sqrt{2} (x+1) \sqrt{\frac{3 x+2}{x+1}} F\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{3 \sqrt{3 x^2+5 x+2}}-\frac{1450 \sqrt{2} (x+1) \sqrt{\frac{3 x+2}{x+1}} E\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{9 \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Int[((2 - 5*x)*x^(3/2))/(2 + 5*x + 3*x^2)^(5/2),x]

[Out]

(2*Sqrt[x]*(74 + 95*x))/(9*(2 + 5*x + 3*x^2)^(3/2)) + (1450*Sqrt[x]*(2 + 3*x))/(9*Sqrt[2 + 5*x + 3*x^2]) - (2*
Sqrt[x]*(1831 + 2175*x))/(9*Sqrt[2 + 5*x + 3*x^2]) - (1450*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[A
rcTan[Sqrt[x]], -1/2])/(9*Sqrt[2 + 5*x + 3*x^2]) + (598*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticF[ArcT
an[Sqrt[x]], -1/2])/(3*Sqrt[2 + 5*x + 3*x^2])

Rule 818

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*(2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*g
- c*(b*e*f + b*d*g + 2*a*e*g))*x))/(c*(p + 1)*(b^2 - 4*a*c)), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d +
e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2*a
*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m +
2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && Ne
Q[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &&
RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 839

Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2, Subst[Int[(f +
 g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1100

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b -
q)*x^2)*Sqrt[(2*a + (b + q)*x^2)/(2*a + (b - q)*x^2)]*EllipticF[ArcTan[Rt[(b - q)/(2*a), 2]*x], (-2*q)/(b - q)
])/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^
2 - 4*a*c, 0]

Rule 1136

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b -
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*Sqrt[(2*a + (
b + q)*x^2)/(2*a + (b - q)*x^2)]*EllipticE[ArcTan[Rt[(b - q)/(2*a), 2]*x], (-2*q)/(b - q)])/(2*c*Sqrt[a + b*x^
2 + c*x^4]), x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{(2-5 x) x^{3/2}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx &=\frac{2 \sqrt{x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}+\frac{2}{9} \int \frac{-37+135 x}{\sqrt{x} \left (2+5 x+3 x^2\right )^{3/2}} \, dx\\ &=\frac{2 \sqrt{x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac{2 \sqrt{x} (1831+2175 x)}{9 \sqrt{2+5 x+3 x^2}}-\frac{2}{9} \int \frac{-897-\frac{2175 x}{2}}{\sqrt{x} \sqrt{2+5 x+3 x^2}} \, dx\\ &=\frac{2 \sqrt{x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac{2 \sqrt{x} (1831+2175 x)}{9 \sqrt{2+5 x+3 x^2}}-\frac{4}{9} \operatorname{Subst}\left (\int \frac{-897-\frac{2175 x^2}{2}}{\sqrt{2+5 x^2+3 x^4}} \, dx,x,\sqrt{x}\right )\\ &=\frac{2 \sqrt{x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac{2 \sqrt{x} (1831+2175 x)}{9 \sqrt{2+5 x+3 x^2}}+\frac{1196}{3} \operatorname{Subst}\left (\int \frac{1}{\sqrt{2+5 x^2+3 x^4}} \, dx,x,\sqrt{x}\right )+\frac{1450}{3} \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{2+5 x^2+3 x^4}} \, dx,x,\sqrt{x}\right )\\ &=\frac{2 \sqrt{x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}+\frac{1450 \sqrt{x} (2+3 x)}{9 \sqrt{2+5 x+3 x^2}}-\frac{2 \sqrt{x} (1831+2175 x)}{9 \sqrt{2+5 x+3 x^2}}-\frac{1450 \sqrt{2} (1+x) \sqrt{\frac{2+3 x}{1+x}} E\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{9 \sqrt{2+5 x+3 x^2}}+\frac{598 \sqrt{2} (1+x) \sqrt{\frac{2+3 x}{1+x}} F\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{3 \sqrt{2+5 x+3 x^2}}\\ \end{align*}

Mathematica [C]  time = 0.254954, size = 164, normalized size = 0.88 \[ \frac{344 i \sqrt{\frac{2}{x}+2} \sqrt{\frac{2}{x}+3} \left (3 x^2+5 x+2\right ) x^{3/2} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{2}{3}}}{\sqrt{x}}\right ),\frac{3}{2}\right )+10764 x^3+26830 x^2+1450 i \sqrt{\frac{2}{x}+2} \sqrt{\frac{2}{x}+3} \left (3 x^2+5 x+2\right ) x^{3/2} E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{2}{3}}}{\sqrt{x}}\right )|\frac{3}{2}\right )+21824 x+5800}{9 \sqrt{x} \left (3 x^2+5 x+2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 - 5*x)*x^(3/2))/(2 + 5*x + 3*x^2)^(5/2),x]

[Out]

(5800 + 21824*x + 26830*x^2 + 10764*x^3 + (1450*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x^(3/2)*(2 + 5*x + 3*x^2)*Ellip
ticE[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2] + (344*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x^(3/2)*(2 + 5*x + 3*x^2)*Ellipt
icF[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2])/(9*Sqrt[x]*(2 + 5*x + 3*x^2)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.021, size = 297, normalized size = 1.6 \begin{align*} -{\frac{1}{27\, \left ( 1+x \right ) ^{2} \left ( 2+3\,x \right ) ^{2}} \left ( 1143\,\sqrt{6\,x+4}\sqrt{3+3\,x}\sqrt{6}\sqrt{-x}{\it EllipticF} \left ( 1/2\,\sqrt{6\,x+4},i\sqrt{2} \right ){x}^{2}-2175\,\sqrt{6\,x+4}\sqrt{3+3\,x}\sqrt{6}\sqrt{-x}{\it EllipticE} \left ( 1/2\,\sqrt{6\,x+4},i\sqrt{2} \right ){x}^{2}+1905\,\sqrt{6\,x+4}\sqrt{3+3\,x}\sqrt{6}\sqrt{-x}{\it EllipticF} \left ( 1/2\,\sqrt{6\,x+4},i\sqrt{2} \right ) x-3625\,\sqrt{6\,x+4}\sqrt{3+3\,x}\sqrt{6}\sqrt{-x}{\it EllipticE} \left ( 1/2\,\sqrt{6\,x+4},i\sqrt{2} \right ) x+762\,\sqrt{6\,x+4}\sqrt{3+3\,x}\sqrt{6}\sqrt{-x}{\it EllipticF} \left ( 1/2\,\sqrt{6\,x+4},i\sqrt{2} \right ) -1450\,\sqrt{6\,x+4}\sqrt{3+3\,x}\sqrt{6}\sqrt{-x}{\it EllipticE} \left ( 1/2\,\sqrt{6\,x+4},i\sqrt{2} \right ) +39150\,{x}^{4}+98208\,{x}^{3}+80460\,{x}^{2}+21528\,x \right ) \sqrt{3\,{x}^{2}+5\,x+2}{\frac{1}{\sqrt{x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2-5*x)*x^(3/2)/(3*x^2+5*x+2)^(5/2),x)

[Out]

-1/27*(1143*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))*x^2-2175*(6*
x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))*x^2+1905*(6*x+4)^(1/2)*(3+3
*x)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))*x-3625*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)
*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))*x+762*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*Ellipt
icF(1/2*(6*x+4)^(1/2),I*2^(1/2))-1450*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/
2),I*2^(1/2))+39150*x^4+98208*x^3+80460*x^2+21528*x)*(3*x^2+5*x+2)^(1/2)/x^(1/2)/(1+x)^2/(2+3*x)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{{\left (5 \, x - 2\right )} x^{\frac{3}{2}}}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(3/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="maxima")

[Out]

-integrate((5*x - 2)*x^(3/2)/(3*x^2 + 5*x + 2)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (5 \, x^{2} - 2 \, x\right )} \sqrt{3 \, x^{2} + 5 \, x + 2} \sqrt{x}}{27 \, x^{6} + 135 \, x^{5} + 279 \, x^{4} + 305 \, x^{3} + 186 \, x^{2} + 60 \, x + 8}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(3/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="fricas")

[Out]

integral(-(5*x^2 - 2*x)*sqrt(3*x^2 + 5*x + 2)*sqrt(x)/(27*x^6 + 135*x^5 + 279*x^4 + 305*x^3 + 186*x^2 + 60*x +
 8), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x**(3/2)/(3*x**2+5*x+2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{{\left (5 \, x - 2\right )} x^{\frac{3}{2}}}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(3/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="giac")

[Out]

integrate(-(5*x - 2)*x^(3/2)/(3*x^2 + 5*x + 2)^(5/2), x)